skip to main content


Search for: All records

Creators/Authors contains: "Gora, Evan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Summary

    Lightning is an important agent of plant mortality and disturbance in forests. Lightning‐caused disturbance is highly variable in terms of its area of effect and disturbance severity (i.e. tree damage and death), but we do not know how this variation is influenced by forest structure and plant composition.

    We used a novel lightning detection system to quantify how lianas influenced the severity and spatial extent (i.e. area) of lightning disturbance using 78 lightning strikes in central Panama.

    The local density of lianas (measured as liana basal area) was positively associated with the number of trees killed and damaged by lightning, and patterns of plant damage indicated that this occurred because lianas facilitated more electrical connections from large to small trees. Liana presence, however, did not increase the area of the disturbance. Thus, lianas increased the severity of lightning disturbance by facilitating damage to additional trees without influencing the footprint of the disturbance.

    These findings indicate that lianas spread electricity to damage and kill understory trees that otherwise would survive a strike. As liana abundance increases in tropical forests, their negative effects on tree survival with respect to the severity of lightning‐related tree damage and death are likely to increase.

     
    more » « less
  2. Dyer, Lee (Ed.)
    Abstract Lightning is a common agent of disturbance in many forest ecosystems. Lightning-damaged trees are a potentially important resource for beetles, but most evidence for this association is limited to temperate pine forests. Here, we evaluated the relationship between lightning damage and beetle colonization of tropical trees. We recorded the number of beetle holes on the trunks of trees from 10 strike sites (n = 173 lightning-damaged trees) and 10 matching control sites (n = 137 control trees) in Panama. The trunks of lightning-struck trees had 370% more beetle holes than control trees. The abundance of beetle holes increased with increasing total crown dieback among both control and lightning-damaged trees, and with larger tree diameter among lightning-struck trees. Beetle holes also were more abundant in trunk sections of lightning-damaged trees located directly below a damaged section of the crown. The results of this study suggest that lightning damage facilitates beetle colonization in tropical forest trees and provide a basis for investigations of the effects of lightning-caused disturbance on beetle population dynamics and assemblage structure. 
    more » « less
  3. Abstract

    We surveyed seven lightning strike sites in the northern Peruvian Amazon. An average of 17.3 trees were damaged per strike; large trees (> 60 cm diameter) were disproportionately affected. The results contribute to a growing body of evidence that lightning is an important agent of disturbance pantropically.

    Abstract in Spanish is available with online material.

     
    more » « less
  4. Abstract

    Lightning is a common source of disturbance, but its ecological effects in tropical forests are largely undescribed. Here we quantify the contributions of lightning strikes to forest turnover and plant mortality in a lowland Panamanian forest using a real‐time lightning monitoring system. We examined 2,195 lightning‐damaged trees distributed among 93 different strikes. None exhibited scars or fires. On average, each strike disturbed 451 m2(95% CI: 365–545 m2), created a canopy gap of 304 m2(95% CI 198–454 m2), and caused 7.36 Mg of woody biomass turnover (CI: 5.36–9.65 Mg). Cumulatively, we estimate that lightning strikes in this forest create canopy gaps equaling 0.39% of forest canopy area, representing 20.1% of annual gap area formation, and are responsible for 16.1% of total woody biomass turnover. Trees, lianas, herbaceous climbers and epiphytes were killed by lightning at rates 8–29 times greater than their baseline mortality rates in undamaged control sites. The likelihood of lightning‐caused death was higher for trees, lianas, and herbaceous climbers than for epiphytes, and high liana mortality suggests that lightning is an important driver of liana turnover. These results indicate that lightning influences gap dynamics, plant community composition and carbon storage capacity in some tropical forests.

     
    more » « less
  5. Abstract

    Decomposition is a major component of global carbon cycling. However, approximately 50% of wood necromass and a small proportion of leaf litter do not contact the forest floor, and the factors that regulate the decomposition above the forest floor are largely untested. We hypothesized that separation from soil resources causes slower decomposition rates above the forest floor. Specifically, we tested whether slower decomposition results from decreased nutrient availability (the nutrient limitation hypothesis) and/or microbial dispersal limitation (the dispersal limitation hypothesis) in the absence of soil resources.

    We tested these hypotheses by combining experimental manipulations of epiphytes and macronutrient fertilization with elemental analyses and community metabarcoding (fungi and prokaryotes). Specifically, we compared wood stick and cellulose decomposition among three treatments: an unaltered trunk section, an epiphyte mat, and a ‘removal treatment’ where an epiphyte mat was removed to test the effect of soil resources. We also performed a factorial fertilization experiment to test the effects of nitrogen (N) and phosphorus (P) on the decomposition of suspended cellulose.

    Decomposition rates were fastest on the epiphyte mats, intermediate in the removal treatment and slowest in the controls. Phosphorus addition increased decomposition rates in the fertilization experiment, and greater P concentrations, along with some micronutrients, were associated with increased rates of decomposition on the epiphyte mats and in the removal treatments. Locally dispersed fungi dominated the wood stick communities, indicating that fungal dispersal is limited in the canopy, and fungal saprotrophs were associated with increased rates of decomposition on the epiphytes.

    These experiments show that slowed decomposition above the forest floor is caused, in part, by separation from soil resources. Moreover, our findings provide support for both the nutrient limitation and dispersal limitation hypotheses and indicate that mechanisms regulating canopy‐level decomposition differ from those documented on the forest floor. This demonstrates the need for a holistic approach to decomposition that considers the vertical position of necromass as it decomposes. Further experimentation is necessary to quantify interactions between community assembly processes, nutrient availability, substrate traits, and microclimate.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

     
    more » « less
  6. Abstract

    Lightning is a major agent of disturbance, but its ecological effects in the tropics are unquantified. Here we used ground and satellite sensors to quantify the geography of lightning strikes in terrestrial tropical ecosystems, and to evaluate whether spatial variation in lightning frequency is associated with variation in tropical forest structure and dynamics. Between 2013 and 2018, tropical terrestrial ecosystems received an average of 100.4 million lightning strikes per year, and the frequency of strikes was spatially autocorrelated at local‐to‐continental scales. Lightning strikes were more frequent in forests, savannas, and urban areas than in grasslands, shrublands, and croplands. Higher lightning frequency was positively associated with woody biomass turnover and negatively associated with aboveground biomass and the density of large trees (trees/ha) in forests across Africa, Asia, and the Americas. Extrapolating from the only tropical forest study that comprehensively assessed tree damage and mortality from lightning strikes, we estimate that lightning directly damages c. 832 million trees in tropical forests annually, of which c. 194 million die. The similarly high lightning frequency in tropical savannas suggests that lightning also influences savanna tree mortality rates and ecosystem processes. These patterns indicate that lightning‐caused disturbance plays a major and largely unappreciated role in pantropical ecosystem dynamics and global carbon cycling.

     
    more » « less
  7. Abstract

    Tree death due to lightning influences tropical forest carbon cycling and tree community dynamics. However, the distribution of lightning damage among trees in forests remains poorly understood.

    We developed models to predict direct and secondary lightning damage to trees based on tree size, crown exposure and local forest structure. We parameterized these models using data on the locations of lightning strikes and censuses of tree damage in strike zones, combined with drone‐based maps of tree crowns and censuses of all trees within a 50‐ha forest dynamics plot on Barro Colorado Island, Panama.

    The likelihood of a direct strike to a tree increased with larger exposed crown area and higher relative canopy position (emergent > canopy >>> subcanopy), whereas the likelihood of secondary lightning damage increased with tree diameter and proximity to neighbouring trees. The predicted frequency of lightning damage in this mature forest was greater for tree species with larger average diameters.

    These patterns suggest that lightning influences forest structure and the global carbon budget by non‐randomly damaging large trees. Moreover, these models provide a framework for investigating the ecological and evolutionary consequences of lightning disturbance in tropical forests.

    Synthesis. Our findings indicate that the distribution of lightning damage is stochastic at large spatial grain and relatively deterministic at smaller spatial grain (<15 m). Lightning is more likely to directly strike taller trees with large crowns and secondarily damage large neighbouring trees that are closest to the directly struck tree. The results provide a framework for understanding how lightning can affect forest structure, forest dynamics and carbon cycling. The resulting lightning risk model will facilitate informed investigations into the effects of lightning in tropical forests.

     
    more » « less